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The optimization problem aiming at the identification of minimal sets of nodes able to drive

the dynamics of Boolean networks toward desired long-term behaviors is central for some appli-

cations, as for example the detection of key therapeutic targets to control pathways in models of

biological signaling and regulatory networks. Unfortunately, the complexity of the optimization

problem is exponential, making it exactly solvable on very small systems only. Some scalable ap-

proaches exist but they rely on linear approximations; other approaches estimate nonlinear effects

but they are generally not scalable. In this talk, we introduce an alternative method inspired by

those used in the solution of the well-studied problem of influence maximization for spreading

processes in social networks. The computational time of the proposed method scales cubically

with the network size. This is achieved thanks to some strong approximations, as for example ne-

glecting dynamical correlations among Boolean variables. However, the method has the desirable

feature of fully accounting for the nonlinear nature of Boolean dynamics. We validate the method

on small gene regulatory networks whose dynamical landscapes are known by means of brute-

force analysis (Figure 1). We then systematically apply it to a large collection of gene regulatory

networks revealing that for about 65% of the analyzed networks, the minimal driver sets contain

less than 20% of their nodes.
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Figure 1: Driving Boolean networks to the desired attractor. (a) We consider the Drosophila melanogaster
segment polarity network. In the visualization, a directed connection from node i to node j indicates that
the state of node i is one argument of the Boolean function F j that regulates the dynamical evolution of
node j. In the visualization, we represent one of the attractors of the network. Active nodes are represented
in black; inactive nodes are depicted in white. The attractor may be reached by controlling the state of
the three nodes highlighted in red. We identified the seed set using the proposed algorithm; the seed set
is X = {(SLP, σ̂SLP = 0), (nWG, σ̂nWG = 1), (nHH, σ̂nHH = 1)}. (b) The 10 attractors of the network,
and their corresponding minimal driving sets as identified by the proposed algorithm. Attractor 4 is the
same as in panel a. Our predictions recover exactly the minimal driver sets for 7 of the 10 fixed points.
We overstimate the size of the driver sets required to reach attractors 5, 9 and 10 by one node only (the
PTC node). (c) Residual entropy as a function of size of the seed set for three selected seed sets leading
to specific attractors. The labels of the attractors are the same as in panel b. The unconstrained greedy
selection process finds attractor 4. As a term of comparison, we display also the curve corresponding to
seed sets composed of randomly selected nodes’ indices/states.


